Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries
نویسندگان
چکیده
We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.
منابع مشابه
Heart Failure Proximal Cerebral Arteries Develop Myogenic Responsiveness in Heart Failure via Tumor Necrosis Factor- –Dependent Activation of Sphingosine-1-Phosphate Signaling
متن کامل
Differential Effects of Long Term FTY720 Treatment on Endothelial versus Smooth Muscle Cell Signaling to S1P in Rat Mesenteric Arteries
The sphingosine-1-phosphate (S1P) analog FTY720 exerts pleiotropic effects on the cardiovascular system and causes down-regulation of S1P receptors. Myogenic constriction is an important mechanism regulating resistance vessel function and is known to be modulated by S1P. Here we investigated myogenic constriction and vascular function of mesenteric arteries of rats chronically treated with FTY7...
متن کاملCapitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness.
The intrinsic ability of resistance arteries to respond to transmural pressure is the single most important determinant of their function. Despite an ever-growing catalogue of signalling pathways that underlie the myogenic response, it remains an enigmatic mechanism. The myogenic response's mechanistic diversity has largely been attributed to 'hard-wired' differences across species and vascular...
متن کاملSphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase.
BACKGROUND RhoA and Rho kinase are important modulators of microvascular tone. METHODS AND RESULTS We tested whether sphingosine kinase (Sphk1) that generates the endogenous sphingolipid mediator sphingosine-1-phosphate (S1P) is part of a signaling cascade to activate the RhoA/Rho kinase pathway. Using a new transfection model, we report that resting tone and myogenic responses of isolated re...
متن کاملThe Role of Sphingosine Kinase 1/Sphingosine-1-Phosphate Pathway in the Myogenic Tone of Posterior Cerebral Arteries
AIMS The goal of the current study was to determine whether the sphingosine kinase 1 (SK1)/sphingosine-1-phosphate (S1P) pathway is involved in myogenic vasoconstriction under normal physiological conditions. In the present study, we assessed whether endogenous S1P generated by pressure participates in myogenic vasoconstriction and which signaling pathways are involved in SK1/S1P-induced myogen...
متن کامل